Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Travel Med Infect Dis ; 37: 101873, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-2247060

RESUMEN

In December 2019, a new severe acute respiratory syndrome coronavirus (SARS-CoV-2) causing coronavirus diseases 2019 (COVID-19) emerged in Wuhan, China. African countries see slower dynamic of COVID-19 cases and deaths. One of the assumptions that may explain this later emergence in Africa, and more particularly in malaria endemic areas, would be the use of antimalarial drugs. We investigated the in vitro antiviral activity against SARS-CoV-2 of several antimalarial drugs. Chloroquine (EC50 = 2.1 µM and EC90 = 3.8 µM), hydroxychloroquine (EC50 = 1.5 µM and EC90 = 3.0 µM), ferroquine (EC50 = 1.5 µM and EC90 = 2.4 µM), desethylamodiaquine (EC50 = 0.52 µM and EC90 = 1.9 µM), mefloquine (EC50 = 1.8 µM and EC90 = 8.1 µM), pyronaridine (EC50 = 0.72 µM and EC90 = 0.75 µM) and quinine (EC50 = 10.7 µM and EC90 = 38.8 µM) showed in vitro antiviral effective activity with IC50 and IC90 compatible with drug oral uptake at doses commonly administered in malaria treatment. The ratio Clung/EC90 ranged from 5 to 59. Lumefantrine, piperaquine and dihydroartemisinin had IC50 and IC90 too high to be compatible with expected plasma concentrations (ratio Cmax/EC90 < 0.05). Based on our results, we would expect that countries which commonly use artesunate-amodiaquine or artesunate-mefloquine report fewer cases and deaths than those using artemether-lumefantrine or dihydroartemisinin-piperaquine. It could be necessary now to compare the antimalarial use and the dynamics of COVID-19 country by country to confirm this hypothesis.


Asunto(s)
Antimaláricos/farmacología , Betacoronavirus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , SARS-CoV-2 , Células Vero
2.
Lancet Infect Dis ; 22(6): e171-e175, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1926993

RESUMEN

The countries of the Greater Mekong subregion-Myanmar, Thailand, Laos, Cambodia, and Vietnam-have set a target of eliminating all Plasmodium falciparum malaria by 2025. Generous funding has been provided, principally by The Global Fund to Fight AIDS, Tuberculosis, and Malaria, to achieve this objective and thereby prevent the spread of artemisinin-resistant Plasmodium falciparum to India and Africa. As the remaining time to reach agreed targets is limited and future external funding is uncertain, it is important to be realistic about the future and spend what remaining funding is left, wisely. New, labour intensive, vertical approaches to malaria elimination (such as the 1-3-7 approach) should not be promoted as these are unproven, likely to be ineffective, costly, and unlikely to be sustainable in the most remote areas where malaria prevalence is highest. Instead, the focus should be on reducing the malaria burden more rapidly in the remaining localised high transmission foci with proven effective interventions, including mass drug administration. Well supported community-based health workers are the key operatives in controlling malaria, but their remit should be broadened to sustain the uptake of their services as malaria declines. This strategy is a sustainable evolution, which will improve rural health care while ensuring progress towards malaria elimination.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Humanos , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Administración Masiva de Medicamentos , Plasmodium falciparum
3.
Phytomedicine ; 104: 154259, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1914900

RESUMEN

BACKGROUND: Artesunate, as a semi-synthetic artemisinin derivative of sesquiterpene lactone, is widely used in clinical antimalarial treatment due to its endoperoxide group. Recent studies have found that artesunate may have multiple pharmacological effects, indicating its significant therapeutic potential in multiple respiratory diseases. PURPOSE: This review aims to summarize proven and potential therapeutic effects of artesunate in common respiratory disorders. STUDY DESIGN: This review summarizes the pharmacological properties of artesunate and then interprets the function of artesunate in various respiratory diseases in detail, such as bronchial asthma, chronic obstructive pulmonary disease, lung injury, lung cancer, pulmonary fibrosis, coronavirus disease 2019, etc., on different target cells and receptors according to completed and ongoing in silico, in vitro, and in vivo studies (including clinical trials). METHODS: Literature was searched in electronic databases, including Pubmed, Web of Science and CNKI with the primary keywords of 'artesunate', 'pharmacology', 'pharmacokinetics', 'respiratory disorders', 'lung', 'pulmonary', and secondary search terms of 'Artemisia annua L.', 'artemisinin', 'asthma', 'chronic obstructive lung disease', 'lung injury', 'lung cancer', 'pulmonary fibrosis', 'COVID-19' and 'virus' in English and Chinese. All experiments were included. Reviews and irrelevant studies to the therapeutic effects of artesunate on respiratory diseases were excluded. Information was sort out according to study design, subject, intervention, and outcome. RESULTS: Artesunate is promising to treat multiple common respiratory disorders via various mechanisms, such as anti-inflammation, anti-oxidative stress, anti-hyperresponsiveness, anti-proliferation, airway remodeling reverse, induction of cell death, cell cycle arrest, etc. CONCLUSION: Artesunate has great potential to treat various respiratory diseases.


Asunto(s)
Antimaláricos , Asma , Tratamiento Farmacológico de COVID-19 , Lesión Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artesunato/uso terapéutico , Asma/tratamiento farmacológico , Asma/metabolismo , Fibrosis , Humanos , Lesión Pulmonar/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
4.
Molecules ; 27(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1911482

RESUMEN

As the world desperately searches for ways to treat the coronavirus disease 2019 (COVID-19) pandemic, a growing number of people are turning to herbal remedies. The Artemisia species, such as A. annua and A. afra, in particular, exhibit positive effects against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and COVID-19 related symptoms. A. annua is a source of artemisinin, which is active against malaria, and also exhibits potential for other diseases. This has increased interest in artemisinin's potential for drug repurposing. Artemisinin-based combination therapies, so-called ACTs, have already been recognized as first-line treatments against malaria. Artemisia extract, as well as ACTs, have demonstrated inhibition of SARS-CoV-2. Artemisinin and its derivatives have also shown anti-inflammatory effects, including inhibition of interleukin-6 (IL-6) that plays a key role in the development of severe COVID-19. There is now sufficient evidence in the literature to suggest the effectiveness of Artemisia, its constituents and/or artemisinin derivatives, to fight against the SARS-CoV-2 infection by inhibiting its invasion, and replication, as well as reducing oxidative stress and inflammation, and mitigating lung damage.


Asunto(s)
Antimaláricos , Artemisia annua , Artemisia , Artemisininas , Tratamiento Farmacológico de COVID-19 , Malaria , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Humanos , Malaria/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , SARS-CoV-2
5.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1892893

RESUMEN

Malaria is an infectious disease and a serious public health problem in the world, with 3.3 billion people in endemic areas in 100 countries and about 200 million new cases each year, resulting in almost 1 million deaths in 2018. Although studies look for strategies to eradicate malaria, it is necessary to know more about its pathophysiology to understand the underlying mechanisms involved, particularly the redox balance, to guarantee success in combating this disease. In this review, we addressed the involvement of oxidative stress in malaria and the potential benefits of antioxidant supplementation as an adjuvant antimalarial therapy.


Asunto(s)
Antimaláricos , Malaria , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Humanos , Malaria/tratamiento farmacológico , Oxidación-Reducción , Estrés Oxidativo
6.
Molecules ; 27(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1820341

RESUMEN

Piper nigrum, or black pepper, produces piperine, an alkaloid that has diverse pharmacological activities. In this study, N-aryl amide piperine analogs were prepared by semi-synthesis involving the saponification of piperine (1) to yield piperic acid (2) followed by esterification to obtain compounds 3, 4, and 5. The compounds were examined for their antitrypanosomal, antimalarial, and anti-SARS-CoV-2 main protease activities. The new 2,5-dimethoxy-substituted phenyl piperamide 5 exhibited the most robust biological activities with no cytotoxicity against mammalian cell lines, Vero and Vero E6, as compared to the other compounds in this series. Its half-maximal inhibitory concentration (IC50) for antitrypanosomal activity against Trypanosoma brucei rhodesiense was 15.46 ± 3.09 µM, and its antimalarial activity against the 3D7 strain of Plasmodium falciparum was 24.55 ± 1.91 µM, which were fourfold and fivefold more potent, respectively, than the activities of piperine. Interestingly, compound 5 inhibited the activity of 3C-like main protease (3CLPro) toward anti-SARS-CoV-2 activity at the IC50 of 106.9 ± 1.2 µM, which was threefold more potent than the activity of rutin. Docking and molecular dynamic simulation indicated that the potential binding of 5 in the 3CLpro active site had the improved binding interaction and stability. Therefore, new aryl amide analogs of piperine 5 should be investigated further as a promising anti-infective agent against human African trypanosomiasis, malaria, and COVID-19.


Asunto(s)
Alcaloides , Antimaláricos , COVID-19 , Piper nigrum , Alcaloides/química , Alcaloides/farmacología , Animales , Antimaláricos/farmacología , Benzodioxoles , Humanos , Mamíferos , Simulación del Acoplamiento Molecular , Piper nigrum/química , Piperidinas , Alcamidas Poliinsaturadas/química , Alcamidas Poliinsaturadas/farmacología
7.
Nat Prod Res ; 36(23): 6150-6155, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1764406

RESUMEN

The interaction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain (RBD) of spike protein with angiotensin-converting enzyme 2 (ACE2) mediates cell invasion. While this interaction mechanism is conserved, the RBD is affected by amino acid mutations in variants such as Delta and Omicron, resulting in enhanced transmissibility and altered ligand binding. Tanshinones are currently investigated as multi-target antiviral agents, but the studies were limited to the original SARS-CoV-2. This study aims at investigating the interaction of tanshinones with the Delta RBD. Chloroquine, methylene blue and pyronaridine, antimalarials previously identified as SARS-CoV-2 RBD binders, were studied for reference. Docking indicated the best scores for tanshinones, while bio-layer interferometry and molecular dynamics highlighted methylene blue as the best Delta RBD binder, although with decreased affinity with respect to the original strain.


Asunto(s)
Antimaláricos , Tratamiento Farmacológico de COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Antimaláricos/farmacología , Azul de Metileno , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Sitios de Unión
8.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1594431

RESUMEN

Malaria is still one of the most dangerous infectious diseases and the emergence of drug resistant parasites only worsens the situation. A series of new tetrahydro-ß-carbolines were designed, synthesized by the Pictet-Spengler reaction, and characterized. Further, the compounds were screened for their in vitro antiplasmodial activity against chloroquine-sensitive (D10) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Moreover, molecular modeling studies were performed to assess the potential action of the designed molecules and toxicity assays were conducted on the human microvascular endothelial (HMEC-1) cell line and human red blood cells. Our studies identified N-(3,3-dimethylbutyl)-1-octyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxamide (7) (a mixture of diastereomers) as the most promising compound endowed with the highest antiplasmodial activity, highest selectivity, and lack of cytotoxicity. In silico simulations carried out for (1S,3R)-7 provided useful insights into its possible interactions with enzymes essential for parasite metabolism. Further studies are underway to develop the optimal nanosized lipid-based delivery system for this compound and to determine its precise mechanism of action.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Carbolinas/química , Carbolinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/síntesis química , Carbolinas/síntesis química , Línea Celular , Diseño de Fármacos , Humanos , Malaria Falciparum/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Plasmodium falciparum/enzimología , Plasmodium falciparum/metabolismo
9.
Eur J Pharmacol ; 915: 174670, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1549763

RESUMEN

Hydroxychloroquine (HCQ) is a derivative of the antimalaria drug chloroquine primarily prescribed for autoimmune diseases. Recent attempts to repurpose HCQ in the treatment of corona virus disease 2019 has raised concerns because of its propensity to prolong the QT-segment on the electrocardiogram, an effect associated with increased pro-arrhythmic risk. Since chirality can affect drug pharmacological properties, we have evaluated the functional effects of the R(-) and S(+) enantiomers of HCQ on six ion channels contributing to the cardiac action potential and on electrophysiological parameters of isolated Purkinje fibers. We found that R(-)HCQ and S(+)HCQ block human Kir2.1 and hERG potassium channels in the 1 µM-100 µM range with a 2-4 fold enantiomeric separation. NaV1.5 sodium currents and CaV1.2 calcium currents, as well as KV4.3 and KV7.1 potassium currents remained unaffected at up to 90 µM. In rabbit Purkinje fibers, R(-)HCQ prominently depolarized the membrane resting potential, inducing autogenic activity at 10 µM and 30 µM, while S(+)HCQ primarily increased the action potential duration, inducing occasional early afterdepolarization at these concentrations. These data suggest that both enantiomers of HCQ can alter cardiac tissue electrophysiology at concentrations above their plasmatic levels at therapeutic doses, and that chirality does not substantially influence their arrhythmogenic potential in vitro.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Corazón/efectos de los fármacos , Hidroxicloroquina/química , Hidroxicloroquina/farmacología , Canales Iónicos/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/inducido químicamente , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Canales de Potasio Éter-A-Go-Go , Humanos , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Ramos Subendocárdicos/efectos de los fármacos , Conejos , Estereoisomerismo
10.
Acta Parasitol ; 67(1): 55-60, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1525614

RESUMEN

Plasmodium resistance to antimalarial drugs is an obstacle to the elimination of malaria in endemic areas. This situation is particularly dramatic for Africa, which accounts for nearly 92% of malaria cases worldwide. Drug pressure has been identified as a key factor in the emergence of antimalarial drug resistance. Indeed, this pressure is favoured by several factors, including the use of counterfeit forms of antimalarials, inadequate prescription controls, poor adherence to treatment regimens, dosing errors, and the increasing use of other forms of unapproved antimalarials. This resistance has led to the replacement of chloroquine (CQ) by artemisinin-based combination therapies (ACTs) which are likely to become ineffective in the coming years due to the uncontrolled use of Artemisia annua in the sub-Saharan African region for malaria prevention and COVID-19. The use of Artemisia annua for the prevention of malaria and COVID-19 could be an important factor in the emergence of resistance to Artemisinin-based combination therapies.


Asunto(s)
Antimaláricos , Artemisia annua , Artemisininas , COVID-19 , Malaria Falciparum , Malaria , Plasmodium , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , COVID-19/prevención & control , Humanos , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum
11.
Int J Biochem Cell Biol ; 142: 106114, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1499649

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged from Wuhan in China before it spread to the entire globe. It causes coronavirus disease of 2019 (COVID-19) where mostly individuals present mild symptoms, some remain asymptomatic and some show severe lung inflammation and pneumonia in the host through the induction of a marked inflammatory 'cytokine storm'. New and efficacious vaccines have been developed and put into clinical practice in record time, however, there is a still a need for effective treatments for those who are not vaccinated or remain susceptible to emerging SARS-CoV-2 variant strains. Despite this, effective therapeutic interventions against COVID-19 remain elusive. Here, we have reviewed potential drugs for COVID-19 classified on the basis of their mode of action. The mechanisms of action of each are discussed in detail to highlight the therapeutic targets that may help in reducing the global pandemic. The review was done up to July 2021 and the data was assessed through the official websites of WHO and CDC for collecting the information on the clinical trials. Moreover, the recent research papers were also assessed for the relevant data. The search was mainly based on keywords like Coronavirus, SARS-CoV-2, drugs (specific name of the drugs), COVID-19, clinical efficiency, safety profile, side-effects etc.This review outlines potential areas for future research into COVID-19 treatment strategies.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , SARS-CoV-2/efectos de los fármacos , Inmunidad Adaptativa/inmunología , Anticuerpos Antivirales/inmunología , Antimaláricos/farmacología , Antiparasitarios/farmacología , Linfocitos T CD4-Positivos/inmunología , COVID-19/terapia , Humanos , Inmunidad Innata/inmunología , Inmunización Pasiva/métodos , Probióticos/farmacología , SARS-CoV-2/inmunología , Sueroterapia para COVID-19
12.
Nucleic Acids Res ; 50(D1): D1282-D1294, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1493886

RESUMEN

The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb; www.guidetopharmacology.org) is an open-access, expert-curated database of molecular interactions between ligands and their targets. We describe expansion in content over nine database releases made during the last two years, which has focussed on three main areas of infection. The COVID-19 pandemic continues to have a major impact on health worldwide. GtoPdb has sought to support the wider research community to understand the pharmacology of emerging drug targets for SARS-CoV-2 as well as potential targets in the host to block viral entry and reduce the adverse effects of infection in patients with COVID-19. We describe how the database rapidly evolved to include a new family of Coronavirus proteins. Malaria remains a global threat to half the population of the world. Our database content continues to be enhanced through our collaboration with Medicines for Malaria Venture (MMV) on the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY (www.guidetomalariapharmacology.org). Antibiotic resistance is also a growing threat to global health. In response, we have extended our coverage of antibacterials in partnership with AntibioticDB.


Asunto(s)
Antibacterianos/farmacología , Antimaláricos/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Antibacterianos/química , COVID-19/etiología , Curaduría de Datos , Bases de Datos Farmacéuticas , Humanos , Ligandos , Malaria/tratamiento farmacológico , Malaria/metabolismo , Interfaz Usuario-Computador , Proteínas Virales/química , Proteínas Virales/metabolismo
13.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1354987

RESUMEN

Recently, we have experienced a serious pandemic. Despite significant technological advances in molecular technologies, it is very challenging to slow down the infection spread. It appeared that due to globalization, SARS-CoV-2 spread easily and adapted to new environments or geographical or weather zones. Additionally, new variants are emerging that show different infection potential and clinical outcomes. On the other hand, we have some experience with other pandemics and some solutions in virus elimination that could be adapted. This is of high importance since, as the latest reports demonstrate, vaccine technology might not follow the new, mutated virus outbreaks. Thus, identification of novel strategies and markers or diagnostic methods is highly necessary. For this reason, we present some of the latest views on SARS-CoV-2/COVID-19 therapeutic strategies and raise a solution based on miRNA. We believe that in the face of the rapidly increasing global situation and based on analogical studies of other viruses, the possibility of using the biological potential of miRNA technology is very promising. It could be used as a promising diagnostic and prognostic factor, as well as a therapeutic target and tool.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Vacunas contra la COVID-19/administración & dosificación , COVID-19/terapia , MicroARNs/genética , Enzima Convertidora de Angiotensina 2/inmunología , Antimaláricos/farmacología , COVID-19/genética , COVID-19/inmunología , COVID-19/virología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/virología , Humanos , Inmunización Pasiva , MicroARNs/análisis , Pandemias , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Vitaminas/farmacología , Sueroterapia para COVID-19
14.
Infect Disord Drug Targets ; 22(1): e290721195143, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1352770

RESUMEN

OBJECTIVE: To evaluate the efficacy of reported anti-malarial phytochemicals as lead compounds for possible drug development against COVID-19. METHODS: An in silico approach was used in this study to determine through molecular docking the binding affinities and site of binding of these phytochemicals to the 3C-like protease of COVID-19 which is considered as the main protease of the virus. RESULTS: A number of anti-malarial phytochemicals like apigenin-7-O-glucoside, decurvisine, luteolin- 7-O-glucoside, sargabolide J, and shizukaols A, B, F, and G showed predicted high binding energies with ΔG values of -8.0 kcal/mol or higher. Shizukaols F and B demonstrated the best binding energies of -9.5 and -9.8, respectively. The acridone alkaloid 5-hydroxynoracronycine also gave a predicted high binding energy of -7.9 kcal/mol. CONCLUSION: This is for the first time that decursivine and several shizukaols were reported as potential anti-viral agents. These compounds merit further studies to determine whether they can be effective drug candidates against COVID-19.


Asunto(s)
Antimaláricos , Tratamiento Farmacológico de COVID-19 , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antivirales/química , Antivirales/farmacología , Antivirales/uso terapéutico , Proteasas 3C de Coronavirus , Glucósidos , Humanos , Simulación del Acoplamiento Molecular , Péptido Hidrolasas , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , SARS-CoV-2
15.
J Reprod Immunol ; 146: 103344, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1315509

RESUMEN

The pandemic COVID-19 presents a major challenge to identify effective drugs for treatment. Clinicians need evidence based on randomized trials regarding effective medical treatments for this infection. Currently no effective therapies exist for the progression of the mild forms to severe disease. Knowledge however is rapidly expanding. Remdesivir, an anti- retroviral agent has in vitro activity against this virus and has shown to decrease the duration of ICU care in patients with severe disease, while low dose dexamethasone also showed a decrease in the duration of stay in cases of severe disease requiring assisted ventilation. At the time of writing this article, two mRNA-based vaccines have shown an approximate 95 % efficacy in preventing infection in large clinical trials. At least one of these drugs has regulatory permission for vaccination in high-income countries. Low and middle-income countries may have difficulties in initiating vaccine programs on large scales because of availability, costs, refrigeration and dissemination. Adequately powered randomized trials are required for drugs with in vitro activity against the virus. Supportive care should be provided for stable, hypoxia and pneumonia free patients on imaging. Vaccines are of obvious benefit and given the preliminary evidence of the efficacy of over 95 %, Low and middle-income countries must develop links with the WHO COVAX program to ensure global distribution of vaccines.


Asunto(s)
Antivirales/uso terapéutico , Vacunas contra la COVID-19/uso terapéutico , COVID-19/terapia , Medicina Basada en la Evidencia/métodos , Pandemias/prevención & control , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antivirales/farmacología , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Ensayos Clínicos como Asunto , Medicina Basada en la Evidencia/tendencias , Salud Global , Humanos , Cooperación Internacional , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Resultado del Tratamiento , Internalización del Virus/efectos de los fármacos
16.
Molecules ; 25(21)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1305742

RESUMEN

Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.


Asunto(s)
Antimaláricos/farmacología , Descubrimiento de Drogas/tendencias , Malaria/tratamiento farmacológico , Plasmodium/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Calcio/metabolismo , Quinasa de la Caseína I/metabolismo , Culicidae , Diseño de Fármacos , Resistencia a Medicamentos , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Imidazoles/farmacología , Concentración 50 Inhibidora , Estadios del Ciclo de Vida/efectos de los fármacos , Sistema de Señalización de MAP Quinasas , Fosfotransferasas/química , Plasmodium/enzimología , Piridinas/farmacología
17.
Antiviral Res ; 193: 105127, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1293551

RESUMEN

In this study, a series of 10 quinoline analogues was evaluated for their in vitro antiviral activity against a panel of alpha- and beta-coronaviruses, including the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2), as well as the human coronaviruses (HCoV) 229E and OC43. Chloroquine and hydroxychloroquine were the most potent with antiviral EC50 values in the range of 0.12-12 µM. Chloroquine displayed the most favorable selectivity index (i.e. ratio cytotoxic versus antiviral concentration), being 165 for HCoV-OC43 in HEL cells. Potent anti-coronavirus activity was also observed with amodiaquine, ferroquine and mefloquine, although this was associated with substantial cytotoxicity for mefloquine. Primaquine, quinidine, quinine and tafenoquine only blocked coronavirus replication at higher concentrations, while piperaquine completely lacked antiviral and cytotoxic effects. A time-of-addition experiment in HCoV-229E-infected HEL cells revealed that chloroquine interferes with viral entry at a post-attachment stage. Using confocal microscopy, no viral RNA synthesis could be detected upon treatment of SARS-CoV-2-infected cells with chloroquine. The inhibition of SARS-CoV-2 replication by chloroquine and hydroxychloroquine coincided with an inhibitory effect on the autophagy pathway as visualized by a dose-dependent increase in LC3-positive puncta. The latter effect was less pronounced or even absent with the other quinolines. In summary, we showed that several quinoline analogues, including chloroquine, hydroxychloroquine, amodiaquine, ferroquine and mefloquine, exhibit broad anti-coronavirus activity in vitro.


Asunto(s)
Antimaláricos/farmacología , Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus/efectos de los fármacos , Quinolinas/farmacología , Animales , Chlorocebus aethiops , Cloroquina/farmacología , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano OC43/efectos de los fármacos , Humanos , Hidroxicloroquina/farmacología , SARS-CoV-2/efectos de los fármacos , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
18.
J Pharmacol Exp Ther ; 377(2): 265-272, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1234275

RESUMEN

Drug-induced long QT syndrome (LQTS) is an established cardiac side effect of a wide range of medications and represents a significant concern for drug safety. The rapidly and slowly activating delayed rectifier K+ currents, mediated by channels encoded by the human ether-a-go-go-related gene (hERG) and KCNQ1 + KCNE1, respectively, are two main currents responsible for ventricular repolarization. The common cause for drugs to induce LQTS is through impairing the hERG channel. For the recent emergence of COVID-19, caused by severe acute respiratory syndrome coronavirus 2, several drugs have been investigated as potential therapies; however, there are concerns about their QT prolongation risk. Here, we studied the effects of chloroquine, hydroxychloroquine, azithromycin, and remdesivir on hERG channels. Our results showed that although chloroquine acutely blocked hERG current (IhERG), with an IC50 of 3.0 µM, hydroxychloroquine acutely blocked IhERG 8-fold less potently, with an IC50 of 23.4 µM. Azithromycin and remdesivir did not acutely affect IhERG When these drugs were added at 10 µM to the cell culture medium for 24 hours, remdesivir increased IhERG by 2-fold, which was associated with an increased mature hERG channel expression. In addition, these four drugs did not acutely or chronically affect KCNQ1 + KCNE1 channels. Our data provide insight into COVID-19 drug-associated LQTS and cardiac safety concerns. SIGNIFICANCE STATEMENT: This work demonstrates that, among off-label potential COVID-19 treatment drugs chloroquine, hydroxychloroquine, azithromycin, and remdesivir, the former two drugs block hERG potassium channels, whereas the latter two drugs do not. All four drugs do not affect KCNQ1 + KCNE1. As hERG and KCNQ1 + KCNE1 are two main K+ channels responsible for ventricular repolarization, and most drugs that induce long QT syndrome (LQTS) do so by impairing hERG channels, these data provide insight into COVID-19 drug-associated LQTS and cardiac safety concerns.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Azitromicina/farmacología , Tratamiento Farmacológico de COVID-19 , Cloroquina/farmacología , Canal de Potasio ERG1/antagonistas & inhibidores , Hidroxicloroquina/farmacología , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/farmacología , Alanina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Azitromicina/uso terapéutico , COVID-19/metabolismo , Cloroquina/uso terapéutico , Relación Dosis-Respuesta a Droga , Canal de Potasio ERG1/metabolismo , Células HEK293 , Humanos , Hidroxicloroquina/uso terapéutico , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/uso terapéutico
19.
Nat Prod Res ; 36(20): 5358-5363, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1225565

RESUMEN

The mechanism of host cell invasion of severe acute respiratory syndrome coronavirus-2 SARS-CoV-2 is connected with the interaction of spike protein (S) with angiotensin-converting enzyme 2 (ACE2) through receptor-binding domain (RBD). Small molecules targeting this assembly are being investigated as drug candidates to contrast SARS-CoV-2. In this context, chloroquine, an antimalarial agent proposed as a repurposed drug to treat coronavirus disease-19 (COVID-19), was hypothesized to bind RBD among its other mechanisms. Similarly, artemisinin and its derivatives are being studied as potential antiviral agents. In this work, we investigated the interaction of artemisinin, its metabolite dihydroartemisinin and chloroquine with RBD by means of computational tools and in vitro. Docking studies showed that the compounds interfere with the same region of the protein and molecular dynamics (MD) simulations demonstrated the stability of the predicted complexes. Bio-layer interferometry showed that chloroquine dose-dependently binds RBD (KD = 35.9 µM) more efficiently than artemisinins. [Formula: see text].


Asunto(s)
Antimaláricos , Artemisininas , Tratamiento Farmacológico de COVID-19 , Enzima Convertidora de Angiotensina 2 , Antimaláricos/farmacología , Antivirales/química , Antivirales/farmacología , Artemisininas/farmacología , Sitios de Unión , Cloroquina/farmacología , Humanos , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
20.
Curr Drug Targets ; 23(5): 441-457, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1190242

RESUMEN

The quinolinic ring, present in several molecules, possesses a great diversity of biological activities. Therefore, this ring is in the structural composition of several candidates of drugs in preclinical and clinical studies; thus, it is necessary to compile these results to facilitate the design of new drugs. For this reason, some of the activities of compounds are selected to examine in this review, such as antimalarial, antimicrobial, anticancer, anti-inflammatory, antidiabetic, anti-rheumatic, and antiviral activities. All publications of scientific articles chosen are dated between 2000 and 2020. In addition to presenting the structures of some natural and synthetic compounds with their activities, we have listed the clinical studies of phases III and IV on antimalarial drugs containing the quinoline nucleus and phase III clinical studies on hydroxychloroquine and chloroquine to assess their possible role in COVID-19. Finally, we have reviewed some of the mechanisms of action, as well as the side effects of some of the quinolinic derivatives.


Asunto(s)
Antimaláricos , Tratamiento Farmacológico de COVID-19 , Quinolinas , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Humanos , Hidroxicloroquina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA